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NOTE: THIS EXAM CONTAINS 4 QUESTIONS, 7 pages and one figure,
Please assure you have read all pages and questions.
Mention your name and studentnr. on ALL pages that you hand in.

Question 1.: Shocks and Rankine-Hugoniot Conditions

Central to investigating the structure and physics of shockwaves are the
Rankine-Hugoniot jump conditions. They are the four flux conservations
laws that hold for an infinitely thin shock, giving us the information needed
to calculate the state of the gas behind the shock (location 2), given its state
just ahead of the shock (location 1).

a) With p the density of the gas, P the pressure of the gas, h the enthalpy
of the gas, V,, the velocity component perpendicular to the shock, V4
the velocity component parallel to the shock, write down the Rankine-
Hugoniot jump conditions for the shock. Use the index 1 for the state
of the gas in front of the shock, index 2 for the gas state behind the
shock.

b) explain the physical significance of each of the terms.

c) With J; = p;Vy; the mass flux across the shock, and V; = 1/p; the
specific volume show that the Rankine-Hugoniot conditions imply that
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d) In the pressure-volume (pV) diagram, indicate the socalled Rayleigh
line, described by the equation you just derived. In the diagram, also
indicate the forbidden regions and explain the rationale behind their
exclusion.

e) Given that the specific enthalpy of an ideal gas is given by
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show that
1
Ve + V(P = Py) = %(Psz - W) (3)

Hint: use the Rayleigh line relation.

f) On-thebasis-eftherelationyoujust-derived;infer the Rankine-Hugoniot
shoek-adiabat™
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Indicate the location of the shock adiabat in the (pV) diagram.

g) Explain how the combination of the Rayleigh line and Rankine-Hugoniot
adiabat help to determine how the conditions in front of shock change
into those behind the shock.

h) For an ideal gas, infer that the jump r in density across a shock is
given by
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i) What, therefore, is the maximum density jump for a very strong shock
(P, > Py) in a monatomic gas (with v =15/3) ?

j) Rewriting the Rankine-Hugoniot conditions in terms of the Mach num-
ber of the shock (strictly speaking, the Mach number of the velocity
component normal to the shock),
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(where C; is the sound velocity) we have that
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Infer from this relation that the pressure behind a blast wave with
velocity Vs that occurs in the interstellar medium with pressure Fy
and density po, for which M,, = M, = V,/es
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Question 2.: Jets and the De Laval Nozzle

A very interesting application of the Bernoulli equation, for compressible
fluids, concerns the de Laval Nozzle. A de Laval nozzle is a tube that is
pinced in the middle, making a carefully balanced, asymmetric hourglass
shape. The nozzle was developed in 1888 by the Swedish inventor Gustaf
de Laval for use on a steam turbine. The principle was first used for rocket
engines by Robert Goddard. An illustration of a de Laval Nozzle is shown

in figure 1.

Figuur 1: Illustration of the de Laval Nozzle

a. We make the approximation of steady, quasi-1-D barotropic flow. Es-
sential is that the flow is compressible (ie. not incompressible). The
1-D flow velocity (along the x-axis) is u, the density is p, the pres-
sure p. Write the Bernoulli equation for compressible flow (ignoring
an external force like gravity).

b. If the local sectional area of the nozzle is A, write the continuity equa-
tion. 4ieny

¢. Infer from the Bernoulli equation that
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where M = u/c, is the Mach number of the flow, the ratio of flow
velocity to the sound speed,
dp
2 = o (10)



. Invoking the continuity equation (question b), show that

dp du  dA
b ruta =l (1)
. and hence show that
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. Investigating the consequences of this nozzle equation, describe first
what the consequence is for the flow velocity as the cross section A
changes and the flow is subsonic. On the other hand, what happens
if the flow is supersonic. Why is the latter at first counterintuitive 7
How can this be explained when looking at the development of the
density p 7

. A sonic transition happens when the flow passes from subsonic to
supersonic, ie. when M = 1. If du/dx is finite, why does this happen
at the throat of the nozzle 7




Question 3.: Gravity Waves

We consider gravity waves in a fluid of finite depth. In the hoorcollege
of March 6 (week 4), we assumed a potential flow and that the vertical
displacement ¢ was very small. This gave rise to the equations

A®, = 0 Poisson equation (13)

8%, 1 a?q>v> iy
e Al = 0 boundary condition (14)
( % 9 ot z=(=0

a. The depth of the fluid is A and take the fluid’s surface at z = 0.
Assume a potential flow. Which new boundary condition should we
impose on the fluid (and the potential)?

b. We (still) expect a simple periodic function in time as our solution:
@, = f(z) cos(kx — wt). (15)

Use Poisson’s equation to find the general solution for f(z) (which is
slightly more general than in the infinite depth case, since z cannot be
—00).
v
c¢. Using the boundary condition in question 2., show that

®, = Acosh (kz + kh) cos (kz — wt) (16)

for arbitrary A.

d. This velocity potential gives rise to a non-zero velocity-component in
the z-direction at z = —h (at the bottom of the fluid). What is the

velocity in the z-direction?

e. Assume that we are talking about an ocean with sand on the bottom
that we can (very) roughly describe as a fluid as well. We then have
two fluids with different velocities and different densities, one moving
over the other. How do we call such a situation in general? Make a
rough sketch of the sand just after the gravity wave started (when it
has only moved in one direction yet).




Question 4.: Numerical Hydrodynamics

In Problem Set 6 about numerical hydrodynamics schemes we tried to
solve the advection equation:
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with a shock-like initial condition (a discontinuity). We found that in the
first-order methods the shock was diffused, as illustrated in the accompany-
ing figure where we see diffusion of the shock in the numerical Lax scheme
at t = 0.5 with u = 1.

This unexpected behaviour is caused by the fact that while this method
is a first order accurate approximation of the advection equation, it is also
in fact a second order accurate approximation of a modified version of the
original equation. In this modified equation we also have a diffusion term and
80 we are actually solving, to second order accuracy, the advection-diffusion
equation for a fluid with homogeneous velocity u and diffusion coeflicient D:

0, (17)
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a. Give the general (non-homogeneous) form of the advection-diffusion
equation.

b. The Lax method is a modified version of the “forward time, central
space” (FTCS) scheme, where the ¢! term is replaced by its (space)
average:
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Write down the Lax-method approxzimation to the solution of the ad-
vection equation in the form q?"‘l = .... Remember that a central
space differential is given by
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and a forward time differential is given by
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In the Lax-method approximation equation, we can replace all numerical
estimate terms ¢* by the exact solution ¢(z,t) (¢&; = ¢(z + Az,t), etc.).
The equation we are then left with is no longer equal to zero, but rather to




E which represents the error of the conversion from exact to discrete. Thus,
we end up with an equation like En = “numerical scheme with estimate

terms replaced by exact terms”.
If we now Taylor expand all ¢(z, t) terms around (z, t) up to second order
we get for the error the following equation:
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c. Rewrite the equation for the error term Ea to something of the form:
%

Ep = —D%’g + O(Az®). (23)
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Use u = %t@ to get rid of the second order time derivative.

Use this result to explain the diffusive behaviour of the Lax-method.

d. Give the Courant-Friedrichs-Lewy condition for the Lax numerical
scheme (and other numerical schemes) to be stable.

e. For the Lax-method, the diffusion term is given by
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If we set At = 0.5Az, why should we not worry about the diffusion
term becoming negative (use the stability condition)?
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